
INFLUENCE OF HEAT CAPACITY OF A VESSEL WALL AND OF THE HEAT CURRENTS 

IN IT ON THE CHARACTERISTICS OF CONVECTION IN A CLOSED VOLUME 
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The author analyzes the influence of the wall heat capacity and of the heat cur- 
rents in it on the characteristics of convective heat transfer in a cylindrical 
vessel with hemispherical ends. 

The investigation of convective heat transfer in closed volumes is the subject of a con- 
siderable number of studies [I-4], but in most of these in analyzing the phenomena the authors 
do not account for the finite heat capacity of the vessel wall, although cases arise where 
this is considerable, especially if one is dealing with unsteady heating of a liquid. In the 
literature, in particular in a number of heat-transfer handbooks [5, 6], some engineering 
methods are given for calculating the influence of the vessel wall. As a rule, the analysis 
is based on solving the one-dimensional heat-conduction equation, in which one accounts for 
the resistance to heat flux of the contents of the vessels, the heat capacity, and the exter- 
nal convective resistance. In [7] in a one-dimensional formulation the authors examined the 
unsteady problem for a planar wall, and here the thermal resistance of the vessel wall is 
neglected, which is quite permissible for metal containers, but the heat capacity is ac- 
counted for. The corresponding results are formulated for an infinite cylinder and a sphere. 
There are practically no results on the influence of heat capacity of the vessel wall and of 
heat fluxes in it on the temperature stratification, the heat transfer, and other local char- 
acteristics of convection in a closed volume. The results given in the present paper can be 
used to calculate these factors in the study of convective heat transfer in a closed volume. 

We investigate convective heat transfer in a cylindrical vessel of height H with hemi- 
spherical ends of radius R, completely filled with a liquid (the case H = 2R corresponds to 
a sphere). The vessel is formed by a thin-walled shell of constant thickness 6. We consider 
that the direction of action of the mass forces coincides with the vertical axis of the ves- 
sel, that the physical properties of the liquid are independent of temperature, and that the 
flow and temperature fields are axisymmetric. To the outer surface of the vessel at time 
t = 0 we apply a constant uniformly distributed heat flux. The vessel shell is considered 
thin (6/R ~ I), and we therefore neglect variation of temperature with radius in the shell. 
The system of dimensionless equations in the variables vorticity ~, stream function @, and 
temperature ~ to determine the variation with time of the shell temperature, and of the flow 
and temperature fields in the liquid has the form: 
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Fig. I. Stream lines (a -- 6/R = IO -s, b -- 6.1U-S): I) ~ = I; 2) 2; 3) --3; 4) --9; 5) 

--12; 6) -4.1; 7) --IZ.4; 8) --16.5. 

Fig. 2. Dependence of A6 v on 6/R and kw/k: i) Fo = 0.02; 2) 0.03; 3) 0.05; 4) 0.I. 

Fig. 3. Dependence of the mean wall temperature and the heat flux from the wall to the 
liquid on the Fourier number: 1) ~/R = lu-S; 2) 3.10-3; 3) 6-J0 -s. 

At time zero the liquid is at rest, and the liquid temperature is constant and is To. 
The system (I)-(5) was solved with the aid of an implicit difference scheme of variable direc- 
tion type on a nonuniform mesh with monotonic approximation of the convective terms [8]. 

We seek a parametric relation for the dimensionless temperature in the form 

0 = [ (r, z, Fo, H/R, 6/R, k~/k, p~c~/(p@, Pr, Ra*). 

Allowance for the finite heat capacity of the shell leads to the appearance of three addi- 
tional similarity parameters kw/k , #wCw/(pc), 6/R, compared with the case where the heat 
capacity is not accounted for. In the present study we analyze the influence of the shell 
heat capacity and its heat currents at Rayleigh number Ra* = 106 , Prandtl number Pr = I and 
H/R = 3. We note that for a vessel of this configuration the Rayleigh number is close to 106 
for which one has a maximum of temperature stratification in quasisteady conditions. The 
values of the similarity variables kw/k, pwCw/(Dc), 6/R were varied in the ranges I ~ kw/k 
200, 0.7 < pwCw/(pc) ~ 6, I0 -s ~ 6/R ~ 6"I0 -s. 

Initially we carried out a series of calculations to evaluate the degree of influence of 
the parameters 6/R, kw/k , pwCw/(pc) on the temperature stratification, the heat transfer, and 
the level of liquid motion. This investigation showed that the relative vessel shell thick- 
ness 6/R had the greatest influence. On the whole the nature of the flow with increasing 
relative shell thickness can be described by some decrease of the level of motion, by attenua- 
tion of the secondary flows, and by a decrease of the thermal stratification. Figure 1 shows 
pictures of stream lines for two values of 6/R at the value Fo = 0.03 [kw/k = 125, pwCw/(pc) = 
4.96]. In the central part of the vessel with the thinnest shell a secondary flow develops 
which presses the main flow to the vessel walls. For an increase of wall thickness by a fac- 
tor of 6 the stream line picture (Fig. ]b) at a given Fourier number corresponds only to the 
time of the secondary flow beginning. The intensities of the main and the secondary flows 
can be judged by comparing the maximum values of the vertical velocity component at the sec- 
tion H/2 on the vessel axis for the main and the secondary flows. For 6/R = 10 -s and 6.10 -s 
these ratios were 168/141 ~ 1.2 and 50/36 ~ 1.4, respectively. As regards the quasistationary 
regime Fo ~ 0.1, the values of Nusselt number Nu = I/<ew - Om > practically coincide, while the 
maximum values of the stream function amplitude, which describe the convection intensity, 
differ by less than 2%. 

As a result of a series of calculations for Ra* = 106 , Pr = I, H/R = 3, pwCw/(pc) = 4.96 
we obtained the dependence of the vertical temperature differences s = 6(0, H) -- 6(0, 0), 
describing the thermal stratification of the liquid, on the relative vessel shell thickness 
6/R (in this case kw/k = 125) and on the ratio of the thermal conductivities of the wall and 
the liquid (~/R = 3"1U -s) for various values of Fourier number (Fig. 2). It turned out that 
the vertical temperature differences A6 v for a given Rayleighnumber are practically independent 
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of the value of the parameter kw/k up to the time Fo ~ 0.03, which corresponds approximately 
to the maximum secondary flow intensity. We note that the maximum intensity of the main cir- 
culatory flow occurs in this case for Fo = 0.UZ. The influence of the parameter kw/k begins 
to show up at the time Fo = 0.035, i.e., immediately after the attenuation of the first sec- 
ondary flow, and for Fo = 0.1 the difference in &8 v reaches 23%. Typically, with efflux of 
time the role of the parameter kw/k becomes more noticeable, since the time to establish 
quasistationary conditions of liquid heating, according to the vertical differences ASv, is 
close in this case to the time to establish this regime with heat transfer by conduction 
(Fo ~ I) [6]. This is due to attenuation of convection in heating from above, as a result of 
which the heat transfer by conduction becomes comparable with convective heat transfer [9]. 

In contrast with the parameter kw/k , the quantity 6/R influences the value of A8 v practi- 
cally immediately after the heat supply commences, and then it has a somewhat greater in- 
fluence than kw/k on the value of Ae v. A decrease of 6/R by a factor of 6 leads to an in- 
crease of the vertical temperature differences with Fo = 0.1 by 45%, which is approximately 
13 ~ for the value qwR/k w = 100~ 

Figure 3 shows a decrease with time of the heat flux coming from the wall to the liquid 
Qz=ff~radO.ndS for various values of ~/R. The derivatives ~e/~r and 38/~z were calculated 

S 

from three points on the nonequilibrium mesh. The broken lines in Fig. 3 show the correspond- 
ing dependence of the mean wall temperature <0w> on the Fourier number. The dependence of 
Q7 on the Fourier number for various values of 6/R is very complex. At first, up to a time 
corresponding to the appearance of secondary flow at a given ~/R, the quantity Ql increases 
sharply, and then, after some fluctuations, goes smoothly to the quasistationary regime. The 
fluctuations of the quantity Q~ are associated with the periodic appearance of secondary 
flows that attenuate with time. We note also that for low values of Fo, i.e., in the heat- 
conduction regime, a considerable part of the heat flux coming from outside to the wall goes 
to increase the heat content of the wall, for vessels with 6/R ~ 3"I0 -3. 

NOTATION 

H, vessel height; R, cylinder radius; 6, shell thickness; r, z, cylindrical coordinates; 
, angle in the spherical coordinate system; Pw, P, densities of the shell and the liquid; 

Cw, c, specific heats of the shell and the liquid; kw, k, thermal conductivities of the shell 
and the liquid; To, initial liquid temperature; qw, specific heat flux to the vessel wall; G, 
thermal diffusivity; n, unit vector normal to the vessel wall and directed into the liquid; 
w, dimensionless vorticity function; %, dimensionless stream function; e = (T -- T0)k/(qwR) , 
dimensionless temperature of the liquid and the wall; G/R, velocity scale; Ra* = g$qwR4/(vak), 
Rayleigh number; Pr = v/a, Prandtl number; Fo = ~t/R 2, Fourier number; Nu = I/<8 w -- 8m> , 
Nusselt number; Ql, total heat flux from the wall to the liquid at a given time; s v = 8(0, 
H) -- 8(0, 0), vertical temperature difference on the vessel axis; <@w >, mean wall tempera- 
ture; qn, specific heat flux from the wall to the liquid. 
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METHODS OF SOLVING CONVECTION AND HEAT-TRANSFER PROBLEMS IN 

REGIONS WITH BOUNDARIES THAT VARY IN FORM OVER TIME 

A. P. Ezerskii UDC 532.516 

A method of numerical solution of nonsteady two-dimensional Navier--Stokes equations 
in regions with curvilinear moving boundaries is proposed. As an example, the so- 
lution of the problem of melting with convection in the liquid phase is presented. 

The need to investigate convective problems in regions of complex geometry has given rise 
to a stream of new numerical methods of calculation. At the same time, the question of the 
accuracy of these methods, the minimal calculation time, and the demands which they make re- 
mains to be resolved. For nonsteady problems with varying geometry of the region, the cal- 
culation time is one of the basic factors in selecting the numerical integration scheme. 

Two approaches to the solution of this kind of problem exist: the first is associated 
with the interpolation of the boundary positions with respect to the points of the calcula- 
tion grid and the second with matching the grid lines with the boundaries. As shown in [1], 
because of the large rounding errors associated with the presence of grid points very close 
to the boundary, it is preferable to use the second approach, the more so in that in this 
case the specification of the boundary conditions is considerably simplified. 

A general description of the method of coordinate transformation for conservative and 
nonconservative systems of partial differential equations of first and second order was given 
in [2]. This method was developed in [3] for the problem of heat conduction with a single 
mobile boundary. Extensive results on the use of the method of automatic numerical[ construc- 
tion of a curvilinear coordinate system of general form with grid lines coinciding with all 
the boundaries of a body of arbitrary form were published in [4]. Because of its generality, 
this approach is especially applicable. However, in the case when the boundaries of the re- 
gion change form, additional iterations are necessary at each computational step to recon- 
struct the coordinate system, which may lead to significant increase in the time (i.e., cost) 
of the calculations. 

In the present work, a simple numerical method of solving nonsteady heat- and mass- 
transfer problems in regions with moving curvilinear boundaries is proposed, on the basis of 
transforming the physical region to rectangular form. This transformation is not associated 
with the solution of a system of Poisson equations for the coordinates, i.e., does not re- 
quire additional consumption of computer resources. 

Consider a physical region consisting in the general case of our moving curvilinear 
boundaries (Fig. 1). The corresponding transformed region will have fixed rectilinear bound- 
aries. The coordinate-transformation law is determined in the form 

~_ x - - x ,  Y - - Y 1  
- - - ,  + = (const) t, ( 1 )  

X 2 - - X i  ' Y 2 - - Y i  

where 

and therefore 
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xl  = xl (y,  t), x~ = x2 (y, 0,  

yx = yj (x, 0 ,  g2 = Y2 (x, t), 
(2) 

~ = g ( x ,  y, t), n - - n ( x ,  y, t). ( 3 )  
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